Casselman Drinking Water System

Waterworks # 210001219 System Category – Large Municipal Residential

Annual Water Report

Municipality of Casselman

Reporting Period of January 1st – December 31st 2023

Issued: February 27th, 2024

Revision: 0

Operating Authority:

This report has been prepared to satisfy the annual reporting requirements in O.Reg 170/03 Section 11 and Schedule 22

Table of Contents

Report Availability1
Compliance Report Card1
System Process Description1
Raw Source1
Treatment1
Distribution2
Treatment Chemicals used during the reporting year:2
Summary of Non-Compliance3
Adverse Water Quality Incidents
Non-Compliance
Non-Compliance Identified in a Ministry Inspection:
Flows
Raw Water Flows
Treated Water Flows
Regulatory Sample Results Summary7
Microbiological Testing7
Operational Testing
Inorganic Parameters7
Schedule 15 Sampling:8
Organic Parameters
Additional Legislated Samples
Maintenance Summary11
Water Treatment Plant Maintenance11
Distribution Maintenance12
Appendix A - WTRS Submission ConfirmationA

Report Availability

As Casselman's drinking water system is considered a large municipal residential system under O. Reg. 170/03, this report must be made available to the public. It can be found at the Casselman Municipal Office (located at 751 St. Jean Street, Casselman, Ontario) and on their website (https://en.casselman.ca). This system does <u>not</u> serve more than 10,000 residents.

Compliance Report Card

Compliance Event	# of Events
Ministry of Environment Inspections	1
Ministry of Labour Inspections	0
QEMS External Audit	1 (S1 Audit)
AWQI's/BWA	5/0
Non-Compliance	0
Community Complaints	27
Spills	0
Watermain Breaks	0

System Process Description

Raw Source

Casselman's drinking water system draws water from the South Nation River via a submerged 457 mm diameter intake pipe that extends halfway into the river from the shoreline. Raw water is conveyed by the intake pipe to a concrete raw water well located inside the surface water treatment plant. Before entering the raw water well, the water flows through a screen to prevent larger materials from entering the plant.

Treatment

Three vertical turbine low lift pumps send the raw water to the two Actiflo[®] tanks. The Actiflo[®] treatment system is comprised of a coagulation tank, an injection tank, a maturation tank, a settling tank and a filter. Coagulant is added to destabilize the particles in the water and enable them to join other particles to form flocs that can be removed in the subsequent settling and filtration processes. Polymer is added into the injection and maturation tanks to aid in the treatment process. When required, a potassium permanganate solution is added to the raw water tank for manganese removal.

The filtration system is comprised of two mixed media filters (i.e., sand/granular activated carbon gravity filters).

A backwash system is in place to clean the filters. Treated water from the clearwell is pumped upwards through the filter and the effluent is sent to the backwash/residuals handling tank. The filtered water is conveyed to a holding tank where transfer pumps send the water through an ultraviolet (UV) reactor consisting of two UV disinfection units. The UV radiation inactivates chlorine-resistant pathogens.

A chlorine solution is mixed into the filtered water prior to travelling through the two clearwells in series that have a capacity of 415 m³ and 440 m³ respectively. In the clearwell, the water is retained for the required contact time to ensure proper disinfection.

Prior to entering the distribution system, by means of the facility's high lift pumps, an ammonium sulphate solution is injected into the water leaving the clearwell. This allows for the formation of a combined chlorine residual. The combined chlorine residual is used to maintain secondary disinfection in Casselman's drinking water distribution system.

Distribution

Three vertical high lift pumps send the water to the distribution system. An analyzer measuring both free and total chlorine residuals is located at the main sewage pumping station, to monitor the combined chlorine residual within the distribution system.

The distribution system consists of an elevated storage tank that has a storage capacity of 1600 m³ and over 10 km of watermain, ranging in size from 150 mm to 250 mm diameter pipe. The system also includes valves, fire hydrants and service connections with lot line shut offs. The storage tank provides for peak hour demands and fire flows.

Chemical Name	Use	Supplier
Potassium Permanganate	Manganese removal	Univar / Brenntag
PAX-XL6	Coagulant	Kemira
Polymer	Coagulant aid	Solenis
Chlorine Gas	Disinfection	Brenntag
Sodium Hypochlorite	Disinfection	Brenntag / Jutzi
Sodium Hydroxide	pH adjustment	Sodrox
Ammonium Sulphate	Chloramination	Brenntag

Treatment Chemicals used during the reporting year
--

Summary of Non-Compliance

Adverse Water Quality Incidents

Date	AWQI #	Parameter	Value	Limit	Legislation
May 2023	162079	Filter Effluent Turbidity Performance Criteria	Filter #1 92.56 %	Filter Effluent Turbidity ≤ 0.3 NTU for min. 95% of month	MDWL 173-101
June 2023	162445	Filter Effluent Turbidity Performance Criteria	Filter #1 71.41 % Filter #2 90.61 %	Filter Effluent Turbidity ≤ 0.3 NTU for min. 95% of month	MDWL 173-101
July 2023	162959	Filter Effluent Turbidity Performance Criteria	Filter #1 50.56 % Filter #2 63.44 %	Filter Effluent Turbidity ≤ 0.3 NTU for min. 95% of month	MDWL 173-101
September 2023	163718	Filter Effluent Turbidity Performance Criteria	Filter #1 94.45 % Filter #2 90.74 %	Filter Effluent Turbidity ≤ 0.3 NTU for min. 95% of month	MDWL 173-101
October 2023	163974	Filter Effluent Turbidity Performance Criteria	Filter #2 91.81 %	Min. 95 % Filter Effluent Turbidity ≤ 0.3 NTU for min. 95% of month	MDWL 173-101

Non-Compliance

Legislation	requirement(s) system failed to meet	duration of the failure (i.e. date(s))	Corrective Action	Status
None to Report				

Non-Compliance Identified in a Ministry Inspection:

Legislation	requirement(s) system failed to meet	duration of the failure (i.e. date(s))	Corrective Action	Status
None to Report		one to Report		

Flows

In 2023, Casselman's drinking water system operated on average under half the rated capacity.

Raw Water Flows

Raw Water flows are regulated under the Permit to Take Water (PTTW). Raw flow data from 2023 was submitted to the Ministry electronically under Permit #6067-9EGMS2 (expires December 21st, 2023) and Permit #6834-CWPLKU (expires January 5th, 2024). The submission confirmations can be found attached in Appendix A.

Raw Flows

Max. Allowable – PTTW

Maximum Raw Flows Rates

Max. Allowable Rate - PTTW 36.75 L/sec

*Brief spike of less then 1 minute above 36.75 L/sec on July 17th and December 19th, 2023.

Monthly Total Raw Flow Comparison

Annual Total Raw Flow Comparison

Treated Water Flows

The Treated Water flows are regulated under the Municipal Drinking Water Licence (MDWL).

Treated Flows

Rated Capacity – MDWL

Monthly Total Treated Flow Comparison

Annual Total Treated Flow Comparison

Regulatory Sample Results Summary

Microbiological Testing

	No. of Samples Collected	Range of E.Coli Results		Range of Total Coliform Results		Range of E.Coli Results Range of Total Coliform Range of HPC Result Results		PC Results
		Min	Max	Min	Max	Min	Max	
Raw Water	52	0	290	< 10	20,000	n/a	n/a	
Treated Water	52	0	0	0	0	< 2	252	
Distribution Water	156	0	0	0	0	< 2	394	

Operational Testing

	No. of Samples	Range o	f Results
	Collected	Minimum	Maximum
Turbidity, On-Line (NTU) – Filter 1	8760	0.01	0.95
Turbidity, On-Line (NTU) – Filter 2	8760	0.01	0.98
Turbidity (NTU) - TW	8760	0.13	13.2
Free Chlorine Residual, On-Line (mg/L) - TW	8760	0.76	3.60
Free Chlorine Residual, In-House (mg/L) - TW	170	0.73	3.26
Combined Chlorine Residual, On-Line (mg/L) - DW	8760	0.30	2.63
Combined Chlorine Residual, Field (mg/L) - DW	156	0.30	2.40
UV Intensity (mJ/cm ²)	8760	54	n/a

NOTE: Spikes recorded by on-line instrumentation may result from air bubbles, power flicks and various maintenance/calibration activities. All spikes are reviewed for compliance with O. Reg. 170/03

Inorganic Parameters

These parameters are tested as a requirement under O. Reg. 170/03. Sodium and Fluoride are required to be tested every 60 months. Nitrate and Nitrite are tested quarterly, and the metals are tested annually as required under O. Reg. 170/03. In the event any parameter exceeds half the maximum allowable concentration the parameter is required to be sampled quarterly.

- MAC = Maximum Allowable Concentration as per O. Reg. 169/03
- MDL = Below the laboratory detection level

	Sample Date	nple Date Sample Bosult		No. of Exc	ceedances
	(yyyy/mm/dd)	Sample Result	IVIAC	MAC	1/2 MAC
Treated Water					
Antimony: Sb (ug/L) - TW	2023/04/03	<mdl 0.1<="" td=""><td>6.0</td><td>No</td><td>No</td></mdl>	6.0	No	No
Arsenic: As (ug/L) - TW	2023/04/03	<mdl 0.1<="" td=""><td>10.0</td><td>No</td><td>No</td></mdl>	10.0	No	No
Barium: Ba (ug/L) - TW	2023/04/03	32.0	1000.0	No	No
Boron: B (ug/L) - TW	2023/04/03	14.0	5000.0	No	No
Cadmium: Cd (ug/L) - TW	2023/04/03	<mdl 0.015<="" td=""><td>5.0</td><td>No</td><td>No</td></mdl>	5.0	No	No
Chromium: Cr (ug/L) - TW	2023/04/03	<mdl 1.0<="" td=""><td>50.0</td><td>No</td><td>No</td></mdl>	50.0	No	No
Mercury: Hg (ug/L) - TW	2023/04/03	<mdl 0.02<="" td=""><td>1.0</td><td>No</td><td>No</td></mdl>	1.0	No	No
Selenium: Se (ug/L) - TW	2023/04/03	<mdl 1.0<="" td=""><td>50.0</td><td>No</td><td>No</td></mdl>	50.0	No	No

Ontario Clean Water Agency – Casselman Drinking Water System – 2023 Annual Water Report Rev. 0 Issued: 27-Feb-24 P a g e | 8

	Sample Date	Comulo Docult	MAG	No. of Ex	ceedances
	(yyyy/mm/dd)	Sample Result	IVIAC	MAC	1/2 MAC
Uranium: U (ug/L) - TW	2023/04/03	<mdl 0.05<="" td=""><td>20.0</td><td>No</td><td>No</td></mdl>	20.0	No	No
Additional Inorganics					
Fluoride (mg/L) - TW	2020/06/01	<mdl 0.1<="" td=""><td>1.5</td><td>No</td><td>No</td></mdl>	1.5	No	No
Nitrite (mg/L) - TW	2023/01/16	<mdl 0.1<="" td=""><td>1.0</td><td>No</td><td>No</td></mdl>	1.0	No	No
Nitrite (mg/L) - TW	2023/04/03	<mdl 0.05<="" td=""><td>1.0</td><td>No</td><td>No</td></mdl>	1.0	No	No
Nitrite (mg/L) - TW	2023/07/04	<mdl 0.05<="" td=""><td>1.0</td><td>No</td><td>No</td></mdl>	1.0	No	No
Nitrite (mg/L) - TW	2023/10/03	<mdl 0.05<="" td=""><td>1.0</td><td>No</td><td>No</td></mdl>	1.0	No	No
Nitrate (mg/L) - TW	2023/01/16	4.9	10.0	No	No
Nitrate (mg/L) - TW	2023/04/03	3.68	10.0	No	No
Nitrate (mg/L) - TW	2023/07/04	0.19	10.0	No	No
Nitrate (mg/L) - TW	2023/10/03	0.19	10.0	No	No
Sodium: Na (mg/L) - TW	2020/04/20	36.5	20	n/a	n/a

*There is no "MAC" for Sodium. The aesthetic objective for sodium in drinking water is 200 mg/L. The local Medical Officer of Health should be notified mg/L when the sodium concentration exceeds 20 mg/L so that this information may be communicated to local physicians for their use with patients on sodium restricted diets.

Schedule 15 Sampling:

The Schedule 15 Sampling is required under O. Reg. 170/03. This system is under a reduced sampling schedule. No plumbing samples were collected.

Distribution System	Number of	Number of	Range of Results		MAC	Number of
Distribution System	Sampling Points	Samples	Minimum	Maximum	(µg/L)	Exceedances
Alkalinity (mg/L)	6	6	122	225	n/a	n/a
рН	6	6	6.8	7.63	n/a	n/a
Lead (µg/L)	3	3	<mdl 0.02<="" td=""><td>0.65</td><td>10</td><td>0</td></mdl>	0.65	10	0

Organic Parameters

These parameters are tested annually as a requirement under O. Reg. 170/03. In the event any parameter exceeds half of the maximum allowable concentration the parameter is required to be sampled quarterly.

- MAC = Maximum Allowable Concentration as per O. Reg. 169/03
- MDL = Below the laboratory detection level

	Sample Date (yyyy/mm/dd) Sample Result	Sample Result	MAC	Number of Exceedances	
				MAC	1/2 MAC
Treated Water					
Alachlor (ug/L) - TW	2023/04/03	<mdl 0.3<="" td=""><td>5.0</td><td>No</td><td>No</td></mdl>	5.0	No	No
Atrazine + Metabolites (μg/L) - TW	2023/04/03	<mdl 0.5<="" td=""><td>5.0</td><td>No</td><td>No</td></mdl>	5.0	No	No
Azinphos-methyl (ug/L) - TW	2023/04/03	<mdl 1.0<="" td=""><td>20.0</td><td>No</td><td>No</td></mdl>	20.0	No	No
Benzene (ug/L) - TW	2023/04/17	<mdl 0.5<="" td=""><td>1.0</td><td>No</td><td>No</td></mdl>	1.0	No	No
Benzo(a)pyrene (ug/L) - TW	2023/04/03	<mdl 0.006<="" td=""><td>0.01</td><td>No</td><td>No</td></mdl>	0.01	No	No
Bromoxynil (ug/L) - TW	2023/04/03	<mdl 0.5<="" td=""><td>5.0</td><td>No</td><td>No</td></mdl>	5.0	No	No

	Sample Date	Sample Posult	MAG	Number of	
	(yyyy/mm/dd)	Sample Result	WAC	MAC	1/2 MAC
Carbaryl (ug/L) - TW	2023/04/03	<mdl 3.0<="" td=""><td>90.0</td><td>No</td><td>No</td></mdl>	90.0	No	No
Carbofuran (ug/L) - TW	2023/04/03	<mdl 1.0<="" td=""><td>90.0</td><td>No</td><td>No</td></mdl>	90.0	No	No
Carbon Tetrachloride (ug/L) - TW	2023/04/17	<mdl 0.2<="" td=""><td>2.0</td><td>No</td><td>No</td></mdl>	2.0	No	No
Chlorpyrifos (ug/L) - TW	2023/04/03	<mdl 0.5<="" td=""><td>90.0</td><td>No</td><td>No</td></mdl>	90.0	No	No
Diazinon (ug/L) - TW	2023/04/03	<mdl 1.0<="" td=""><td>20.0</td><td>No</td><td>No</td></mdl>	20.0	No	No
Dicamba (ug/L) - TW	2023/04/03	<mdl 1.0<="" td=""><td>120.0</td><td>No</td><td>No</td></mdl>	120.0	No	No
1,2-Dichlorobenzene (ug/L) - TW	2023/04/17	<mdl 0.5<="" td=""><td>200.0</td><td>No</td><td>No</td></mdl>	200.0	No	No
1,4-Dichlorobenzene (ug/L) - TW	2023/04/17	<mdl 0.5<="" td=""><td>5.0</td><td>No</td><td>No</td></mdl>	5.0	No	No
1,2-Dichloroethane (ug/L) - TW	2023/04/17	<mdl 0.5<="" td=""><td>5.0</td><td>No</td><td>No</td></mdl>	5.0	No	No
1,1-Dichloroethylene (ug/L) - TW	2023/04/17	<mdl 0.5<="" td=""><td>14.0</td><td>No</td><td>No</td></mdl>	14.0	No	No
Dichloromethane (Methylene Chloride) (ug/L) - TW	2023/04/17	<mdl 5.0<="" td=""><td>50.0</td><td>No</td><td>No</td></mdl>	50.0	No	No
2,4-Dichlorophenol (ug/L) - TW	2023/04/03	<mdl 0.2<="" td=""><td>900.0</td><td>No</td><td>No</td></mdl>	900.0	No	No
2,4-Dichlorophenoxy acetic acid (2,4-D) (ug/L) - TW	2023/04/03	<mdl 1.0<="" td=""><td>100.0</td><td>No</td><td>No</td></mdl>	100.0	No	No
Diclofop-methyl (ug/L) - TW	2023/04/03	<mdl 0.9<="" td=""><td>9.0</td><td>No</td><td>No</td></mdl>	9.0	No	No
Dimethoate (ug/L) - TW	2023/04/03	<mdl 1.0<="" td=""><td>20.0</td><td>No</td><td>No</td></mdl>	20.0	No	No
Diquat (ug/L) - TW	2023/04/03	<mdl 5.0<="" td=""><td>70.0</td><td>No</td><td>No</td></mdl>	70.0	No	No
Diuron (ug/L) - TW	2023/04/03	<mdl 5.0<="" td=""><td>150.0</td><td>No</td><td>No</td></mdl>	150.0	No	No
Glyphosate (ug/L) - TW	2023/04/03	<mdl 25.0<="" td=""><td>280.0</td><td>No</td><td>No</td></mdl>	280.0	No	No
Malathion (ug/L) - TW	2023/04/03	<mdl 5.0<="" td=""><td>190.0</td><td>No</td><td>No</td></mdl>	190.0	No	No
Metolachlor (ug/L) - TW	2023/04/03	<mdl 3.0<="" td=""><td>50.0</td><td>No</td><td>No</td></mdl>	50.0	No	No
Metribuzin (ug/L) - TW	2023/04/03	<mdl 3.0<="" td=""><td>80.0</td><td>No</td><td>No</td></mdl>	80.0	No	No
Monochlorobenzene (Chlorobenzene) (ug/L) - TW	2022/04/11	<mdl 0.5<="" td=""><td>80.0</td><td>No</td><td>No</td></mdl>	80.0	No	No
Paraquat (ug/L) - TW	2023/04/03	<mdl 1.0<="" td=""><td>10.0</td><td>No</td><td>No</td></mdl>	10.0	No	No
PCB (ug/L) - TW	2023/04/03	<mdl 0.05<="" td=""><td>3.0</td><td>No</td><td>No</td></mdl>	3.0	No	No
Pentachlorophenol (ug/L) - TW	2023/04/03	<mdl 0.2<="" td=""><td>60.0</td><td>No</td><td>No</td></mdl>	60.0	No	No
Phorate (ug/L) - TW	2023/04/03	<mdl 0.3<="" td=""><td>2.0</td><td>No</td><td>No</td></mdl>	2.0	No	No
Picloram (ug/L) - TW	2023/04/03	<mdl 5.0<="" td=""><td>190.0</td><td>No</td><td>No</td></mdl>	190.0	No	No
Prometryne (ug/L) - TW	2023/04/03	<mdl 0.1<="" td=""><td>1.0</td><td>No</td><td>No</td></mdl>	1.0	No	No
Simazine (ug/L) - TW	2023/04/03	<mdl 0.5<="" td=""><td>10.0</td><td>No</td><td>No</td></mdl>	10.0	No	No
Terbufos (ug/L) - TW	2023/04/03	<mdl 0.5<="" td=""><td>1.0</td><td>No</td><td>No</td></mdl>	1.0	No	No
Tetrachloroethylene (ug/L) - TW	2023/04/17	<mdl 0.5<="" td=""><td>10.0</td><td>No</td><td>No</td></mdl>	10.0	No	No
2,3,4,6-Tetrachlorophenol (ug/L) - TW	2023/04/03	<mdl 0.2<="" td=""><td>100.0</td><td>No</td><td>No</td></mdl>	100.0	No	No
Triallate (ug/L) - TW	2023/04/03	<mdl 10.0<="" td=""><td>230.0</td><td>No</td><td>No</td></mdl>	230.0	No	No
Trichloroethylene (ug/L) - TW	2023/04/17	<mdl 0.5<="" td=""><td>5.0</td><td>No</td><td>No</td></mdl>	5.0	No	No
2,4,6-Trichlorophenol (ug/L) - TW	2023/04/03	<mdl 0.2<="" td=""><td>5.0</td><td>No</td><td>No</td></mdl>	5.0	No	No
2-methyl-4-chlorophenoxyacetic acid (MCPA)	2023/04/03	<mdl 10.0<="" td=""><td>100.0</td><td>No</td><td>No</td></mdl>	100.0	No	No
(ug/L) - TW	2022/21/25		45.0		
I rifluralin (ug/L) - TW	2023/04/03	<mdl 0.5<="" td=""><td>45.0</td><td>No</td><td>No</td></mdl>	45.0	No	No
Vinyl Chloride (ug/L) - TW	2023/04/17	<mdl 0.2<="" td=""><td>1.0</td><td>No</td><td>No</td></mdl>	1.0	No	No

Number of Exceedances MAC Sample Year Sample Result MAC 1/2 MAC **Distribution Water** Trihalomethane (THM): Total (ug/L) 2023 79.4 100 No Yes Annual Running Average - DW Haloacetic Acid (HAA): Total (ug/L) 2023 80 51.6 Yes No Annual Running Average - DW

Distribution samples are tested quarterly for THM's and HAA's in accordance with O. Reg. 170/03.

Additional Legislated Samples

As per Casselman's Municipal Drinking Water Licence, monthly samples are required to monitor total suspended solids in the backwash water and supernatant tank.

Parameter	Annual Average TSS Concentration (mg/L)	Annual Average TSS Concentration Limit (mg/L)
Backwash water	10.8	25
Supernatant	7.1	25

As per Casselman's Municipal Drinking Water Licence, quarterly samples are required to monitor NDMA at the furthest point in the distribution system.

Parameter	Date	Result (ug/L)	MAC (ug/L)	Exceedance
NDMA	2023/01/16	< 0.0009	0.009	No
	2023/04/03	< 0.0009	0.009	No
	2023/07/04	0.0024	0.009	No
	2023/10/03	< 0.0009	0.009	No

Maintenance Summary

Water Treatment Plant Maintenance

Date	Description
	Rebuilt and re-installed low lift pump #101
February	Replaced chlorine dosing analyzer
	Installed new chlorine dosing analyzer pump
	Installed new effluent turbidity analyzer for Filter #1
March	Installed new effluent turbidity analyzer for Filter #2
	Completed calibration/testing of Chlorine Gas Monitoring System
	Replaced faulty card in PLC for chlorine panel
April	Replaced pump for treated water chlorine analyzer
	Purchased new batteries for stand-by generator at water treatment plant
	Replaced pressure meter at water tower
May	Replaced pressure differential on Filter #1
	Cleaned supernatant tank at plant
	Replaced treated water turbidity analyzer (temporary replacement)
	Cleaned pipe between transfer tank and clear well (near NaOH injection point)
June	Connected new diesel fuel tank for stand-by generator
	ESA inspection completed
	Started dosing of Potassium Permanganate
	Lifting device inspections completed
July	Replaced positioner on filter effluent valve for Actiflo #1
	Completed annual chlorination system maintenance
	Cleaned Clear Well #1
August	Replaced raw water valve to Actiflo #2
August	Replaced actuator on filter effluent valve for Actiflo #1
September	Completed calibration/testing of Chlorine Gas Monitoring System
October	Flow meter calibration/verification completed
November	Replaced raw water sample pump
	HACH Instrumentation inspection/calibration completed
	Replaced doors to chlorine room
NOVEILIDEI	Purchased new UV reference sensor
	Fire Extinguisher inspections completed
	Backflow preventers inspection completed

Distribution Maintenance

Date	Description
March	Repaired water service on Principale St
April	5 Standpost and cleanout repairs on Percy, Nature, Albert and Isabelle St
May	1 Standpost raised on Percy St
	1 Standpost repaired on Isabelle St
	Spring distribution system flushing
June	1 Hydrant rebuilt at Canadian Tire
	1 Hydrant rebuilt on Yvon St
July	1 Valve replacement on Laurier St
	Summer distribution system flushing
August	1 Hydrant rebuilt on corner of Montcalm and Brebeuf St
August	1 Standpost repaired on Laurier St
September	1 Hydrant valve repaired on Sarah St
	1 Hydrant rebuilt on Sarah St
	1 Hydrant rebuilt on corner of Brebeuf and Dollard St
Octobor	1 Hydrant rebuilt on corner of Principale and Dollard St
October	1 Hydrant valve repaired on corner of Principale and Dollard St
	Fall distribution system flushing and winterizing
November	3 Hydrants rebuilt and raised on Principale St
	1 Hydrant rebuilt on Nature St
	1 Hydrant body replacement on corner of Principale and Martin St
	1 Standpost repair on Desnoyer St
December	6 Hydrants rebuilt on Principale, Levesques Joliette & Racine St
	1 Hydrant valve repaired on corner of St-Isidore and Percy St
	1 Hydrant valve repaired on Racine St
	10 Valves rebuilt on St-Isidore St

Appendix A - WTRS Submission Confirmation

Location: WTRS / WT DATA / Input WT Record

WTRS-WT-008

Water Taking Data submitted successfully.

Confirmation:

Thank you for submitting your water taking data online.

Permit Number: 6067-9EGMS2 Permit Holder: THE CORPORATION OF THE VILLAGE OF CASSELMAN. Received on:Feb 8, 2024 1:06 PM

This confirmation indicates that your data has been received by the Ministry, but should not be construed as acceptance of this data if it differs from that specified on the Permit Number, assigned to the Permit Holder stated above.

Return to Main Page

NORTH2 DUNDAS2 | 2024/02/08 version: v4.5.0.21 (build#: 22) Last modified: 2018/09/18

Ontario 😵

This site maintained by the Government of Ontario ©2024<u>Queen's Printer for Ontario</u>

Location: WTRS / WT DATA / Input WT Record

WTRS-WT-008

Water Taking Data submitted successfully.

Confirmation:

Thank you for submitting your water taking data online.

Permit Number: 6834-CWPLKU Permit Holder: THE CORPORATION OF THE VILLAGE OF CASSELMAN. Received on:Feb 8, 2024 1:04 PM

This confirmation indicates that your data has been received by the Ministry, but should not be construed as acceptance of this data if it differs from that specified on the Permit Number, assigned to the Permit Holder stated above.

Return to Main Page

NORTH2 DUNDAS2 | 2024/02/08 version: v4.5.0.21 (build#: 22) Last modified: 2018/09/18

Ontario 😵

This site maintained by the Government of Ontario ©2024<u>Queen's Printer for Ontario</u>